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ABSTRACT 
This work presented the Micromechanical modeling of flow curve of DP800 steel in uniaxial tension was studied 

using the representative volume element (RVE) method. Digimat and ABAQUS software were coupled and used 

to provide the required RVE model parameters and to perform simulations. Modeling results were validated using 

the experimental flow curves of the steels. It was found that the flow curve of DP800 steel was accurately predicted 

from the onset of plastic deformation up to the onset of necking. The RVE size of 12.7x12.7x12.7 μm and 

7.9x7.9x7.9 μm containing 26 martensite islands were found as the optimum RVE sizes for DP800 steel. A mesh 

of C3D4 elements having a size of 0.050 μm was found to be the optimum element type and mesh. 

 

KEYWORDS: DP800 steel, representative volume element (RVE) method, ABAQUS software, flow curves of 

the steels, onset of necking, optimum element type and mesh. 

INTRODUCTION 
Dual phase steels introduced in the 1960s and started to be used in the manufacturing industry in the 1970s. Their 

greater combination of strength and ductility compared to conventional steels encouraged the industries to support 

research on processing and microstructure-properties relationship of dual phase steels. The microstructure of dual 

phase steels consists of ferrite as the soft matrix and martensite as the hard phase, and small amounts of bainite 

may also be present. Ferrite and martensite are responsible for plastic deformation and strengthening of dual phase 

steels, respectively.   

 

Commercial dual phase steels are produced by an intercritical annealing heat treatment in the (α + ϒ) region of 

the iron-cementite phase diagram followed by rapid quenching to room temperature. Quenching must be 

sufficiently fast to avoid the diffusion and formation of other structures such as pearlite and bainite. However, in 

bainite-assisted dual phase steel, the steel is quenched to a certain temperature, an isothermal heat treatment is 

carried out to form bainite and a second rapid quench cools the steel to room temperature. The martensite volume 

fraction varies in different grades of dual phase steel.The martensite fraction in a typical DP800 and DP780 steel 

is approximately 10 vol% and 20 vol%, respectively; however, in a DP980 steel, the volume fraction of martensite 

is more than 30 vol% in order to provide sufficient strength to the steel. The martensite content in dual phase 

steels determines the intercritical annealing temperature. According to the lever rule, greater amounts of austenite 

are formed at higher intercritical annealing temperatures which transforms to martensite by rapid quenching.    

 

During processing of dual phase steels, different alloying elements are used in solid solution to increase the 

strength and hardness of the steel. Silicon, manganese, chromium, and molybdenum are the typical alloying 

elements in dual phase steels. Silicon affects the chemical composition of austenite by accelerating the migration 

of carbon atoms from the ferrite to the austenite during intercritical annealing. Manganese is used to enhance 

hardenability of dual phase steels. Chromium and molybdenum reduce the critical cooling rate of austenite for 

martensitic transformation. Other elements such as vanadium and titanium may be added to form carbide and 

nitride precipitates that can increase the strength of the steel by precipitation hardening. These precipitates limit 

the movement of the ferrite-austenite interface during quenching and enhance the martensite formation. 
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Motivations for Dual Phase Steels  

Most of the current passenger vehicles operate on fossil fuels which tend to create economic and ecological 

challenges. One way to decrease fuel consumption is to reduce vehicle weight and this can be done by using 

stronger and thinner sheets in the vehicle body so as not to compromise passenger safety. Reducing the thickness 

of body parts and simultaneously preserving occupant safety requires a grade of sheet metal with an excellent 

combination of strength and formability such as dual phase steels. 

 

Strengthening Mechanisms in Dual Phase Steels  

The microstructure of commercial dual phase steels includes ferrite and martensite. Depending on the heat 

treatment cycle, it may also include same bainite. The influence of strengthening mechanisms in ferrite, martensite 

and bainite on the flow stress of dual phase steels is discussed in the following.  

 

Ferrite  

Ferrite is the interstitial solid solution of carbon in body centered cubic (BCC) iron. It is the predominant phase 

in most low carbon steels including high strength low alloy steels (HSLA) and dual phase steels (DP). The ferrite 

grain size has a significant influence on the yield strength of dual phase steels. The influence of grain size on yield 

strength is described by the Hall-Petch relationship which was successively developed by Hall and then Petch: 

2
1

  dkyoy    

  

where d is the grain diameter, σy is the yield stress, σ0 is the friction stress opposing the movement of dislocations 

in the grains and ky is a constant. The mean ferrite grain size in advanced dual phase steels is reduced to less than 

10 µm which remarkably enhances the flow stress. Solid solution hardening is another strengthening mechanism 

that enhances the flow stress of ferrite. In dual phase steels, manganese is the dominant alloying element which 

has a notable influence on strengthening of the steel. Solid solution strengthening depends on the solute 

concentration as follows: σSSS =kcn 

where c is the solute concentration, k is a constant, and 0.5<n<0.67.  

 

Martensite  

During processing of dual phase steels, the steel is quenched from the intercritical annealing temperature to room 

temperature. During this heat treatment, the intercritical austenite transforms to martensite by a diffusionless 

phase transformation. The mechanical strength of martensite primarily depends on its carbon content. The 

dependence of martensite hardness on the carbon content of the steel is shown in Figure 1-1. Also, Figure 1-2 

presents the yield strength of martensite as a function of martensite carbon content. Similar to ferrite, solid 

solution hardening is a strengthening mechanism in martensite.                    

                                          

 
Figure 1 -1 Hardness of martensitic steel                      Figure 1 -2 Dependence of martensite yield 

as a function of carbon content                                 strength on martensite carbon content 
 

DP800 Dual Phase Steel  

According to the quantitative metallography results, the martensite volume fraction in DP800 steel was 0.090. 

Based on the martensite content, the aspect ratio of martensite islands and the martensite size distribution in 

DP800 steel, 6 RVEs with different sizes were generated. Since both the morphology and the volume fraction of 
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martensite were considered in RVE generation, all of the 6 RVEs properly presented the overall microstructural 

characteristics of the steel. Hence, as can be seen in Figure 1-3 to Figure 1-4, the predicted flow curves are 

generally very close to the experimental flow curve.  

  

Table 3-1 Specifications of the RVEs generated for micromechanical modeling of DP800 steel  

RVE Size Cube 

Side (µm)  

Number of Martensite 

islands inside the RVE  

Effective volume Fraction of  

Martensite inside the RVE  
Modeling Results  

9.5  11  0.090   Figure 1-3 

10.3  14  0.089  Figure 1-4 

11.6  20  0.091  Figure 1-5 

12.7  26  0.090  Figure 1-6 

13.2  29  0.090  Figure 1-7 

14.2  36  0.096  Figure 1-8 

 

As it can be seen in Figure 1-6(f), Figure 1-7(f) and Figure 1-8(f), when the number of martensite islands inside 

an RVE is more than 25, the numerical flow curve practically lies on the experimental flow curve. While the 

ultimate tensile strength (UTS) in the experimental flow curve is 648.7 MPa, the RVEs with 26, 29 and 36 

martensite islands predict an ultimate tensile strength of 649.0, 649.6 and 646.8 MPa, respectively. Hence, the 

error is less than 0.3%.  When the number of martensite islands in the RVEs was 11, 14 and 20, the numerical 

flow curve underestimated the flow stress of DP800 steel. The predicted ultimate tensile strengths by the RVEs 

including 11, 14 and 20 martensite islands were 637.4, 647.6 and 632.1 MPa, respectively.  Compared to the 

RVEs with more than 25 martensite islands, since the number of martensite islands inside of RVEs with 11, 14 

and 20 martensite islands was not sufficient, the size distribution of martensite in the RVE was not sufficiently 

similar to the size distribution of martensite in the real microstructure. Hence, these smaller RVEs could not 

properly represent the characteristics of the microstructure.   

    

 
(a) (b) 

 

 
(c)                                                                                (d) 
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(e)                               (f) 

Figure 1-3 Micromechanical modeling results for DP800 steel with 11 martensite islands inside the RVE: 

(a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in the RVE at ε≈0.12, 

(d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE and (f) numerical and 

experimental flow curves of DP800 steel. 

 

 
(a)                                                      (b) 

 
(c)                                                                     (d) 

 

 
(e)                                                                      (f) 

Figure 1-4 Micromechanical modeling results for DP800 steel with 14 martensite islands inside the RVE: 

(a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in the RVE at ε≈0.12, 
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(d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE and (f) numerical and 

experimental flow curves of DP800 steel. 

 
(a)                                                                                           (b) 

 

 
(c)                                                                             (d) 

 

 
(e)  (f) 

Figure 1-5 Micromechanical modeling results for DP800 steel with 20 martensite islands inside the RVE: 

(a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in the RVE at ε≈0.12, 

(d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE and (f) numerical and 

experimental flow curves of DP800 steel. 
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                                                          (a)                                                                      (b) 

 
(c)                                                                       (d) 

 

 
(e)  (f) 

Figure 1-6 Micromechanical modeling results for DP800 steel with 26 martensite islands inside the RVE: 

(a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in the RVE at ε≈0.12, 

(d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE and (f) numerical and 

experimental flow curves of DP800 steel. 
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(b) 

 
(c)  (d) 

 

 
(e)  (f) 

Figure 1-7 Micromechanical modeling results for DP800 steel with 29 martensite islands inside the RVE: 

(a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in the RVE at ε≈0.12, 

(d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE and (f) numerical and 

experimental flow curves of DP800 steel. 

 

  
( a )   
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                                (a)  (b) 

 
(c)  (d) 

 

 
(e)  (f) 

Figure 1-8 Micromechanical modeling results for DP800 steel with 36 martensite islands inside the RVE: 

(a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in the RVE at ε≈0.12, 

(d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE and (f) numerical and 

experimental flow curves of DP800 steel. 

 

The accuracy of the predicted flow curves, the experimental and predicted tensile toughness of the DP800 steel, 

i.e. the area below the flow curves, were compared. The predicted toughness of the steel was numerically 

calculated using more than 2000 data points. As it is shown in Figure 1-9(a), all the RVEs predicted the toughness 

of the steel quite accurately. For a more precise comparison, the results of Figure 1-9(a) are shown in Figure 1-

9(b) with a magnified scale. As it can be seen, the RVEs with a size of 9.5, 10.3 and 11.6 µm3, underestimated 

the toughness of the steel more than the RVEs with a size of equal to or greater than 12.7 µm. Comparing the 

modeling results for the DP800 flow curve, the accuracy of modeling results using RVEs with a size of 12.7, 

13.2 and 14.2 µm3 and with 26, 29 and 36 martensite islands, respectively, was almost similar; however, 
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modeling time for the RVEs with 29 and 36 martensite islands is notably longer than the required modeling time 

for the RVE with 26 martensite islands. Therefore, an RVE size of 12.7x12.7x12.7 µm3 containing 26 martensite 

islands is suggested as the optimum RVE size since it accurately predicted the flow curve of this DP800 steel. 

As can be seen in Figure 1-6(b), when the number of martensite islands was 26, it was feasible for the Digimat 

software to generate an RVE with a martensite size distribution similar to the martensite size distribution in the 

real microstructure.   

 

 
(a)                                             (b) 

Figure 1-9 (a) Tensile toughness of the DP800 steel as measured under the experimental flow curve and 

predicted using RVEs of different sizes, and (b) with an enlarged scale 

 

The flow curve of DP800 steel was accurately predicted up to the onset of macroscopic plastic instability and the 

ultimate tensile strength of the steel was predicted with less than 0.3% error.   
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